Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Two oxazane macrocycles

Philip J. Cox ${ }^{\text {a* }}$ and Paul Kong Thoo Lin ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland, and ${ }^{\text {b }}$ School of Life Sciences, The Robert Gordon University, St zAndrews Street, Aberdeen AB25 1HG, Scotland
Correspondence e-mail: p.j.cox@rgu.ac.uk

Received 25 February 2004
Accepted 22 March 2004
Online 9 April 2004
The 20-membered ring in 1,7,11,17-tetraoxa-2,6,12,16-tetraazacycloeicosane tetrahydrochloride, $\mathrm{C}_{12} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{4+} \cdot 4 \mathrm{Cl}^{-}$, adopts an endo conformation, while the 18 -membered ring in 1,6,10,15-tetraoxa-2,5,11,14-tetraazacyclooctadecane tetrahydrochloride, $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{4+} \cdot 4 \mathrm{Cl}^{-}$, lies about an inversion centre and adopts a symmetrical conformation. In the crystal structures of both compounds, the cations and chloride anions are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds into planar sheets of molecules; the sheets are linked into three-dimensional networks via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Comment

Heteromacrocyclic systems have for a long time generated great interest in the scientific community because of their huge range of applications. For example, several 1,4,7,10-tetraazacyclododecane (cyclen) derivatives have been used as models for protein-metal binding sites in biological systems (Kimura, 1993; Kimura et al., 1997; Kimura \& Koike, 1998). Other cyclic polyamine systems have also been designed and synthesized in order to demonstrate that these systems can act as molecular catalysts capable of effecting reactions on anion substrates, for example, the phosphoryl transfer that plays an essential role in the energetics of all living organisms (Hosseini \& Lehn, 1986, 1987). Furthermore, other tetraazamacrocyclic ligands, such as the cyclen, cyclam and bicyclam ligands, have been shown to exhibit antitumour and anti-HIV activity (Inoue \& Kimura, 1994, 1996; Kong Thoo Lin et al., 2000). Other areas where macrocyclic systems could have useful applications are in diagnostic and sensor technologies. The free bases of the cation macrocycles described in this work have been used in the assembly of ion-selective electrodes for nitrate detection (Application No./Patent No. 02730426.0-2204-GB0202292). The formation of the tetrahydrochloride salts of the free bases results in protonation of all the N atoms in the macrocycle, thus forming (I) and (II), whose structures are described here.

The 20 -membered ring in 1,7,11,17-tetraoxa-2,6,12,16tetraazacycloeicosane tetrahydrochloride, (I) (Fig. 1a), adopts
an endo conformation, as shown in Fig. 1(b). The $\mathrm{C}-\mathrm{O}-\mathrm{N}-$ $\mathrm{C}, \mathrm{O}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angles (Table 1) are all essentially trans, while the $\mathrm{O}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ and $\mathrm{O}-\mathrm{C}-$ $\mathrm{C}-\mathrm{C}$ torsion angles are mostly gauche, except for $\mathrm{O} 7-\mathrm{N} 6-$ $\mathrm{C} 5-\mathrm{C} 4$, which has a value of $87.14(14)^{\circ}$. The $\mathrm{N} 2 \cdots \mathrm{~N} 12$ separation across this cation ring is 4.870 (2) \AA, whereas the O7…O17 separation is 6.377 (2) \AA. A related crystallographic study of diaqua(1,7,11,17-tetraoxa-2,6,12,16-tetraazacycloei-cosane- $\left.N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}\right)$ nickel(II) dichloride has been performed (Kuksa et al., 2002); in this structure, the metal complex has crystallographically imposed $2 / m$ symmetry.

The 18 -membered ring in 1,6,10,15-tetraoxa-2,5,11,14tetraazacyclooctadecane tetrahydrochloride, (II) (Fig. 2), lies about an inversion centre [chosen for convenience as that at $\left.\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\right]$ and has a symmetrical conformation. The $\mathrm{C}-\mathrm{O}-\mathrm{N}-$

(a)

(b)

Figure 1
(a) The atomic arrangement in the cation of (I). Displacement ellipsoids are shown at the 50% probability level. (b) A view showing the endo conformation of the cation macrocycle of (I).

C torsion angles are essentially trans, while the $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$, $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{O}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angles are gauche; one of the two $\mathrm{N}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles is gauche and the other is trans (Table 2). In this macrocycle, the shortest transannular contact, $\mathrm{O} 1 \cdots \mathrm{O} 1$, is $3.423(2) \AA$, whereas the $\mathrm{C} 3 \cdots \mathrm{C} 3$ distance is $6.560(2) \AA$. An example of an 18 -membered oxazane macrocyle with no crystallographically imposed symmetry is found in N,N-dipyridylbisaza-18-crown-6 (Junk \& Smith, 2002).

In both (I) and (II), the cations and anions are linked into sheets via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. In (I), all eight independent $\mathrm{N}-\mathrm{H}$ bonds take part in $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 3), which serve to generate sheets in the (001) plane, as shown in Fig. 3, by simple translations in the a and b directions; these sheets, which lie approximately in the domain

Figure 2
The atomic arrangement in the cation of (II). Displacement ellipsoids are shown at the 50% probability level. Atoms marked with a prime are at the equivalent position $(1-x, 1-y, 1-z)$.

Figure 3
A view of the sheet of cations linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds in (I). Atoms $\mathrm{Cl} 3 *$ and $\mathrm{Cl} 4 \#$ are at the equivalent positions $(1+x, y, z)$ and $(x$, $y-1, z$), respectively.

Figure 4
A view of the sheet of cations linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds in (II). Atoms $\mathrm{Cl1}^{*}$ and $\mathrm{Cl} 2 \#$ are at the equivalent positions $(1-x,-y$, $1-z)$ and $(x, y, z-1)$, respectively.
$0<z<0.5$, are then linked to inversion-related Cl^{-}ions by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (Table 3), generating a three-dimensional network. In (II), because of the inversion centre, there are only four independent $\mathrm{N}-\mathrm{H}$ bonds and, as in (I), these all form $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 4), generating sheets in the (100) plane by a combination of inversions and b and c translations, as shown in Fig. 4; these sheets lie in the domain $0>x>1$. The observed conformation is stabilized by an intramolecular N5-H5B \cdots O1 hydrogen bond; there are also $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions within the sheets (Table 4). The sheets are linked into a three-dimensional network by sets of C3$\mathrm{H} 3 A \cdots \mathrm{Cl} 1(1+x, y, z)$ interactions.

Experimental

The title oxazane macrocycle systems were synthesized according to previously published methods (Kuksa et al., 1999). For (I), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.50-1.90\left(m, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 2.96\left(t, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2} \mathrm{~N}\right), 3.75$ $\left(t, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2} \mathrm{O}\right), 5.64(b r, s, 4 \mathrm{H}, 4 \times \mathrm{ONH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 25.4, 28.5, 50.8, 71.1; HRMS-FAB: calculated for [MH] ${ }^{+} \mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$: 293.21; found: 293.2197. For (II), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.85$ (pentet, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 3.15 (doublet, $8 \mathrm{H}, 4 \times \mathrm{CH}_{2} \mathrm{~N}$), $3.85\left(t, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2} \mathrm{O}\right)$, 6.00 (br, $s, 4 \mathrm{H}, 4 \times \mathrm{ONH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 28.5,50.8,71.1$; HRMS-FAB: calculated for $[M \mathrm{H}]^{+} \mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$: 265.18; found: 265.1877. The tetrahydrochloride salts were prepared by dissolving the free bases in ethanol and adding a few drops of concentrated HCl . The precipitates were filtered off, dried and recrystallized from ethanol-water to give colourless crystals.

Compound (I)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{4+} .4 \mathrm{Cl}^{-}$
$M_{r}=438.22$
Triclinic, $P \overline{1}$
$a=9.1948(2) \AA$
$b=9.8341(2) \AA$
$c=12.2985(3) \AA$
$\alpha=83.145(1)^{\circ}$
$\beta=82.933(1)^{\circ}$
$\gamma=80.865(1)^{\circ}$
$V=1083.95(4) \AA^{\circ}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans to fill Ewald sphere
Absorption correction: multi-scan (SORTAV; Blessing, 1997)
$T_{\text {min }}=0.860, T_{\text {max }}=0.945$
17127 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.079$
$S=1.05$
4892 reflections
218 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0341 P)^{2}\right.$
$+0.2746 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$ for (I).

C20-O1-N2-C3	$-160.12(11)$	$\mathrm{C} 10-\mathrm{O} 11-\mathrm{N} 12-\mathrm{C} 13$	$-169.99(11)$
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$-53.62(15)$	$\mathrm{O} 11-\mathrm{N} 12-\mathrm{C} 13-\mathrm{C} 14$	$68.59(14)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-176.99(12)$	$\mathrm{N} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-171.99(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 6$	$-56.12(17)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{N} 16$	$179.77(12)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 6-\mathrm{O} 7$	$87.14(14)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{N} 16-\mathrm{O} 17$	$73.33(14)$
C5-N6-O7-C8	$179.20(11)$	$\mathrm{C} 15-\mathrm{N} 16-\mathrm{O} 17-\mathrm{C} 18$	$-165.74(11)$
N6-O7-C8-C9	$-177.85(11)$	$\mathrm{N} 16-\mathrm{O} 17-\mathrm{C} 18-\mathrm{C} 19$	$165.42(10)$
$\mathrm{O} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-62.88(16)$	$\mathrm{O} 17-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$-55.81(15)$
C8-C9-C10-O11	$-60.32(16)$	$\mathrm{N} 2-\mathrm{O} 1-\mathrm{C} 20-\mathrm{C} 19$	$174.63(11)$
C9-C10-O11-N12	$176.75(11)$	$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20-\mathrm{O} 1$	$-52.01(16)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl}{ }^{\mathrm{i}}$	0.92	2.12	$3.0287(12)$	170
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 2$	0.92	2.15	$3.0321(13)$	161
$\mathrm{~N} 6-\mathrm{H} 6 A \cdots \mathrm{Cl} 4$	0.92	2.11	$3.0199(13)$	171
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots \mathrm{Cl} 1$	0.92	2.17	$3.0836(13)$	175
$\mathrm{~N} 12-\mathrm{H} 12 A \cdots \mathrm{Cl} 3$	0.92	2.09	$3.0086(13)$	175
$\mathrm{~N} 12-\mathrm{H} 12 B \cdots \mathrm{Cl} 2$	0.92	2.19	$3.0683(13)$	159
$\mathrm{~N} 16-\mathrm{H} 16 A \cdots \mathrm{Cl} 4^{\mathrm{ii}}$	0.92	2.10	$3.0210(13)$	174
$\mathrm{~N} 16-\mathrm{H} 16 B \cdots \mathrm{C} 11^{\text {iii }}$	0.92	2.20	$3.1202(13)$	178
$\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{Cl} 1^{\text {ii }}$	0.99	2.80	$3.7866(16)$	175
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{Cl} 4^{\mathrm{iv}}$	0.99	2.82	$3.6814(15)$	145
$\mathrm{C} 13-\mathrm{H} 13 B \cdots \mathrm{Cl} 2^{\mathrm{v}}$	0.99	2.68	$3.6315(15)$	161
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{Cl} 4^{\text {iv }}$	0.99	2.71	$3.6013(15)$	150

[^0]
Compound (II)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{4+} .4 \mathrm{Cl}^{-}$
$Z=1$
$M_{r}=410.16$
Triclinic, $P \overline{1}$
$a=7.6921$ (2) A
$b=8.3920(2) \AA$
$c=8.6696$ (3) \AA
$\alpha=67.409(2)^{\circ}$
$\beta=68.128(2)^{\circ}$
$\gamma=88.967(2)^{\circ}$
$V=474.37(3) \AA^{3}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans to fill Ewald sphere
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
$T_{\min }=0.941, T_{\text {max }}=0.980$
6137 measured reflections

Refinement

Refinement on F^{2}
$R(F)=0.030$
$w R\left(F^{2}\right)=0.075$
$S=1.05$
2090 reflections
101 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0262 P)^{2}\right.$
$+0.1427 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$D_{x}=1.436 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3448 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.64 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Plate, colourless
$0.16 \times 0.08 \times 0.03 \mathrm{~mm}$

2090 independent reflections
1798 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-11 \rightarrow 11$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.26 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.019 (4)

Table 3
Selected torsion angles (${ }^{\circ}$) for (II).

C8 $8^{\text {vi }}-\mathrm{C} 9^{\text {vi }}-\mathrm{O} 1-\mathrm{N} 2$	$69.50(17)$	$\mathrm{C} 4-\mathrm{N} 5-\mathrm{O} 6-\mathrm{C} 7$	$-171.03(11)$
$\mathrm{C} 9^{\text {vi }}-\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 3$	$173.78(11)$	$\mathrm{N} 5-\mathrm{O} 6-\mathrm{C} 7-\mathrm{C} 8$	$171.92(11)$
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$-72.23(15)$	$\mathrm{O} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-63.37(15)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 5$	$70.57(17)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1^{\mathrm{i}}$	$-52.29(17)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 5-\mathrm{O} 6$	$55.80(15)$		
Symmetry code: $(\mathrm{vi}) 1-x, 1-y, 1-z$.			

Table 4
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\text {v }}$	0.92	2.12	3.0323 (13)	170
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 2$	0.92	2.13	3.0214 (13)	163
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{Cl} 2^{\text {vii }}$	0.92	2.13	3.0340 (13)	168
N5-H5B \cdots Cl1	0.92	2.29	3.1074 (13)	148
N5-H5B \cdots O1	0.92	2.37	2.9007 (16)	117
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{Cl1}{ }^{\text {i }}$	0.99	2.66	3.5445 (15)	149
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{Cl}^{1}{ }^{\text {v }}$	0.99	2.76	3.5673 (16)	139
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 6^{\text {iii }}$	0.99	2.60	3.5012 (19)	152

Symmetry codes: (i) $1+x, y, z$; (iii) $2-x, 1-y,-z$; (v) $1-x,-y, 1-z$; (vii) $x, y, z-1$.

All H atoms were resolved clearly in difference maps and were subsequently allowed for as riding atoms using SHELXL97 (Sheldrick, 1997) defaults, with $\mathrm{N}-\mathrm{H}$ distances of $0.92 \AA, \mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ and $U_{\text {iso }}$ values of $1.2 U_{\text {eq }}$ of the attached atom.

For both compounds, data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: $D E N Z O$ and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999);
program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the EPSRC for use of the National Crystallographic Service, Southampton University, England (X-ray data collection), and the National Mass Spectrometry Service Centre, University of Wales, Swansea (mass spectral analysis).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1742). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-429.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Hosseini, M. W. \& Lehn, J. M. (1986). Helv. Chim. Acta, 69, 587-603.
Hosseini, M. W. \& Lehn, J. M. (1987). J. Am. Chem. Soc. 109, 70477058.

Inoue, Y. \& Kimura, E. (1994). Biol. Pharm. Bull. 17, 243-250.
Inoue, Y. \& Kimura, E. (1996). Biol. Pharm. Bull. 19, 456-458.
Junk, P. C. \& Smith, M. K. (2002). Inorg. Chem. Commun. 5, 10821085.

Kimura, E. (1993). Pure Appl. Chem. 65, 355-359.
Kimura, E. \& Koike, T. (1998). Chem. Commun. pp. 1495-1500.
Kimura, E., Koike, T. \& Shionoya, M. (1997). Struct. Bonding, 89, 1-28.
Kong, D., Meng, L., Ding, J., Xie, Y. \& Huang, X. (2000). Polyhedron, 19, 217-223.
Kuksa, V. A., Marshall, C., Wardell, S. M. S. V. \& Kong Thoo Lin, P. (1999). Synthesis, 6, 1034-1038.
Kuksa, V. A., Wardell, S. M. S. V. \& Kong Thoo Lin, P. (2002). Inorg. Chem. Commun. 3, 267-270.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: Symmetry codes: (i) $1+x, y, z$; (ii) $x, y-1, z$; (iii) $2-x, 1-y,-z$; (iv) $1-x, 1-y,-z$; (v) $1-x,-y, 1-z$.

